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1 Averages of Subharmonic Functions

1.1 Convexity of averages of subharmonic functions

Last time, we proved the following theorem.

Theorem 1.1. If u ∈ SH(R1 < |x| < R2, then M(r) = max|x|=r u(x) is a convex function
of log(r).

This gave us a stronger form of the maximum principle. Here is a similar theorem.

Theorem 1.2. Let u ∈ SH(R1 < |x| < R2), let 0 ≤ R1 < R2 ≤ ∞, and let

I(r) =
1

2πr

∫
|y|=r

u(y) ds(y). R1 < r < R2.

Then I(r) is a convex function of log(r). If u ∈ SH(|X| < R), then I(r) is increasing, and

I(r)
r→0+−−−−→ u(0).

Proof. Write

I(r) =
1

2π

∫ 2π

0
u(reit) dt.

Approximating u by a decreasing sequence of continuous functions, we see that I(r) is upper
semicontinuous. We claim that I(r) satisfies the maximum principle: If R1 < r1 < r2 < R2,
then

max
[r1,r2]

I(r) = max(I(r1), I(r2)).

Let R1 < r0 < R2, and let ρ > 0 be small. Let |x| = r0, and write

u(x) ≤ 1

πρ2

∫∫
|y|≤ρ

u(x+ y) dy

=
1

πρ2

∫∫
u(x+ y)1B0(ρ)(y) dy
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=
1

πρ2

∫∫
u(y)1B0(ρ)(y − x) dy.

Integrating over |x| = r0, we get

I(r) ≤ 1

2πr

1

πρ2

∫
|x|=r0

[∫∫
u(y)1B0(ρ)(y − x) dy

]
ds(x)

=
1

2πr

1

πρ2

∫∫
u(y)

[∫
|x|=r0

1B0(ρ)(y − x) ds(x)

]
dy

=
1

2πr

1

πρ2

∫∫
u(y)ψ(y) dy,

where

ψ(y) =

∫
|x|=r0

1B0(ρ)(y − x) ds(x).

The function ψ gives us the 1-dimensional Lebesgue measure of the part of the circle
{|z − x| = r0} contained in the ball B(y, ρ). We have

• ψ ≥ 0,

• ψ is continuous,

• ψ(y) = ϕ(|y|) for some function ϕ.

• ϕ(r) = 0 for |r − r0| ≥ ρ

• ϕ(r0) > 0.

We get

I(r) ≤
∫∫

u(y)ϕ(|y|) dy =

∫∫
0≤t≤2π
|r−r0|≤ρ

u(reit)ϕ(r)r dr dt =

∫
ϕ̃(r)I(r) dr,

where ϕ̃(r) = 2πrϕ(r). So

I(r0) ≤
∫
ϕ̃(r)I(r) dr.

If u is harmonic, then equality holds. In particular, using u = 1, we get∫
ϕ̃(r) dr = 1.

The sub-mean value inequality

I(r0) ≤
∫
ϕ̃(r)I(r) dt
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can now be used to prove the maximum principle for I(r) in the usual way. This proves
the claim.

To show that I(r) is convex, let R1 < r2 < r2 < R2, and let (̃r) = I(r) − a log(r) − b
be such that Ĩ(rj) ≤ 0 for j = 1, 2. We want to show that Ĩ(r) ≤ 0 when r1 ≤ r ≤ r2.
This follows from the maximum principle applied to the subharmonic function u(x) =
a log |x| − b.

Now assume that u subharmonic in |x| < R. We want to show that I(r) is increasing
in r. We have I(r) = f(log(r)), where f is convex on (−∞, log(R)). We want to show that
f is increasing, so it suffices to show that the right derivative f ′right ≥ 0. If f ′right(t0) < 0
for some t0, write

f(t) ≥ f(t0) + f ′right(t0)(t− t0).

Letting t→ −∞, we get that f(t)→ +∞. So I(r)→ +∞ as r → 0. This is impossible, as
u is locally bounded above.

Finally, we have for all small r > 0,

u(0) ≤ I(r) =
1

2π

∫ 2π

0
u(reit) dt.

Using the upper semicontinuity of u at 0, we get that I(r)
r→0+−−−−→ u(0).

Here is a special case of this theorem, applied to a harmonic function u.

Corollary 1.1. Let u be harmonic in R1 < |x| < R2. Then

I(r) = a log(r) + b.

Proof. The theorem gives us that

±I(r) =
1

2πr

∫
|x|=r

u(x) ds(x)

are convex functions of log(r). So I(r) is an affine function of log(r).

1.2 The Phragmén-Lindelöf principle

We would like to extend the maximum principle for subharmonic functions to unbounded
domains.

Example 1.1. Let Ω = {Im(z) = x2 > 0}, and let i(x) = x2. This is harmonic, un-
bounded, and u|∂Ω = 0. The idea is that we should be ok if we demand that the function
does not grow too rapidly at ∞.

We will prove a general theorem which will allow us to do this. The original motivation
of Phragmén and Lindelöf was the case of when Ω is a sector of the complex plane.
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